Data Mining and Machine Learning

TECHNISCHE UNIVERSITÄT DARMSTADT

Learning Rule Sets

Introduction

Learning Rule Sets

- Separate-and-Conquer Rule Learning
 - Covering algorithm
- Overfitting and Pruning
- Multi-Class Problems

Learning Rule Sets

- many datasets cannot be solved with a single rule
 - not even the simple weather dataset
 - they need a rule set for formulating a target theory
- finding a computable generality relation for rule sets is not trivial
 - adding a condition to a rule specializes the theory
 - adding a new rule to a theory generalizes the theory
- practical algorithms use different approaches
 - covering or separate-and-conquer algorithms
 - based on heuristic search

A Sample Database

No.	Education	Marital S.	Sex.	Children?	Approved?	
1	Primary	Single	М	N	-	
2	Primary	Single	М	Y	-	
3	Primary	Married	М	Ν	+	
4	University	Divorced	F	Ν	+	
5	University	Married	F	Y	+	
6	Secondary	Single	М	Ν	-	
7	University	Single	F	Ν	+	
8	Secondary	Divorced	F	Ν	+	
9	Secondary	Single	F	Y	+	
10	Secondary	Married	М	Y	+	
11	Primary	Married	F	Ν	+	
12	Secondary	Divorced	М	Y	-	
13	University	Divorced	F	Y	-	
14	Secondary	Divorced	Μ	Ν	+	V

Property of Interest ("class variable")

A Learned Rule Set

IF	E=primary	AND	S=male	AND	M=married	AND	C=no	THEN	yes
ΙF	E=university	AND	S=female	AND	M=divorced	AND	C=no	THEN	yes
ΙF	E=university	AND	S=female	AND	M=married	AND	C=yes	THEN	yes
ΙF	E=university	AND	S=female	AND	M=single	AND	C=no	THEN	yes
ΙF	E=secondary	AND	S=female	AND	M=divorced	AND	C=no	THEN	yes
ΙF	E=secondary	AND	S=female	AND	M=single	AND	C=yes	THEN	yes
ΙF	E=secondary	AND	S=male	AND	M=married	AND	C=yes	THEN	yes
ΙF	E=primary	AND	S=female	AND	M=married	AND	C=no	THEN	yes
ΙF	E=secondary	AND	S=male	AND	M=divorced	AND	C=no	THEN	yes
ELS	E no								

The solution is

- a set of rules
- that is complete and consistent on the training examples
- \rightarrow it must be part of the version space
 - but it does not generalize to new examples!

The Need for a Bias

- rule sets can be generalized by
 - generalizing an existing rule (as in (Batch-)Find-S)
 - introducing a new rule (this is new)
- a minimal generalization could be
 - introduce a new rule that covers only the new example
- Thus:
 - The solution on the previous slide will be found as a result of the FindS algorithm
 - FindG (or Batch-FindG) are less likely to find such a bad solution because they prefer general theories
- But in principle this solution is part of the hypothesis space and also of the version space
 - \Rightarrow we need a search bias to prevent finding this solution!

A Better Solution

IF Marital = married	THEN yes
IF Marital = single AND Sex = female	THEN yes
IF Marital = divorced AND Children = no	THEN yes
ELSE no	

 $\langle - \rangle$

Recap: Subgroup Discovery

Abstract algorithm for learning a single rule:

- **1**. Start with an empty theory *T* and training set *E*
- 2. Learn a single (consistent) rule R from E and add it to T

3. return T

- Problem:
 - the basic assumption is that the found rules are complete, i.e., they cover all positive examples
 - What if they don't?
- Simple solution:
 - If we have a rule that covers part of the positive examples:
 - add some more rules that cover the remaining examples

Key idea of Covering algorithms

Properties of Subgroup Discovery algorithms:

- Consistency can always be maximized
 - a rule that covers no negative examples can always be found
- Completeness can not necessarily be ensured
 - Many concepts can only be formulated with multiple rules

Learning strategy:

- Try to learn a rule that is as consistent as possible
- Fix completeness by repeating this step until each (positive) training example is covered by at least one rule

Relaxing Completeness and Consistency

 So far we have defined correctness on training data as consistency + completeness

- $\blacksquare \rightarrow$ we aim for a rule that covers all positive and no negative examples
- This is not always a good idea (→ overfitting)

Example:

Training set with 200 examples, 100 positive and 100 negative

 Rule Set A consists of 100 complex rules, each covering a single positive example and no negatives

 \rightarrow A is complete and consistent on the training set

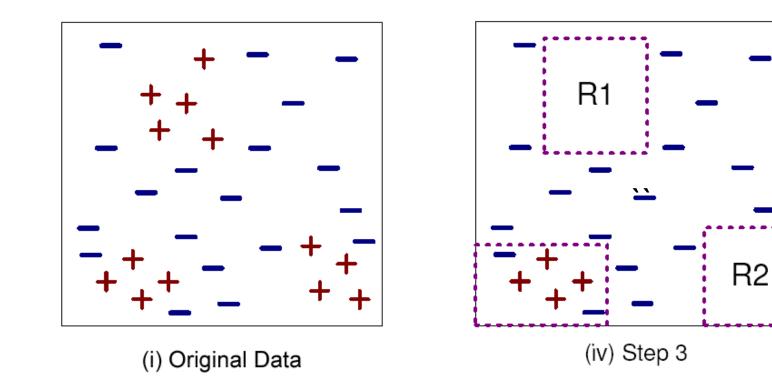
- Rule Set B consists of a single rule, covering 99 positive and 1 negative example
 - \rightarrow B is incomplete and inconsistent on the training set
- Which one will generalize better to unseen examples?

Separate-and-Conquer Rule Learning

Learn a set of rules, one rule after the other using greedy covering

- **1**. Start with an empty theory *T* and training set *E*
- 2. Learn a single (*consistent*) rule *R* from *E* and add it to *T*
- 3. If T is satisfactory (complete), return T
- 4. Else:
 - Separate: Remove examples explained by R from E
 - <u>Conquer</u>: goto 2.
- One of the oldest family of learning algorithms
- Different learners differ in how they find a single rule
- Completeness and consistency requirements are typically loosened

Separate-and-Conquer Rule Learning

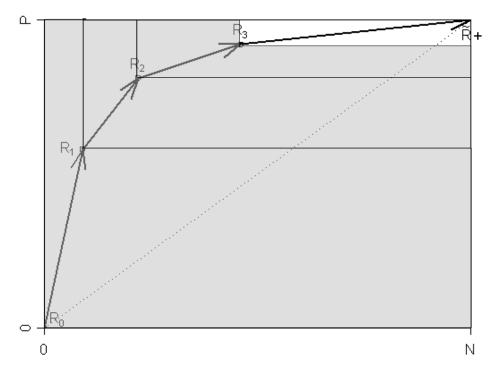


Quelle für Grafiken: http://www.cl.uni-heidelberg.de/kurs/ws03/einfki/KI-2004-01-13.pdf

 $\langle \rightarrow \rangle$

Covering Strategy

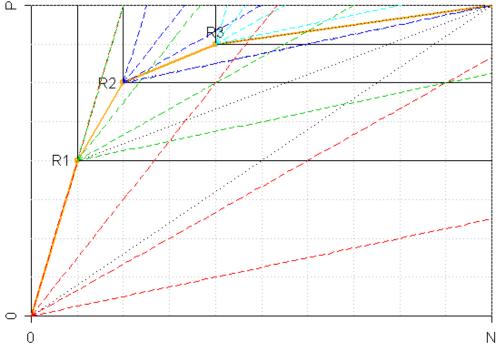
- Covering or Separate-and-Conquer rule learning learning algorithms learn one rule at a time
 - and then removes the examples covered by this rule
- This corresponds to a path in coverage space:
 - The empty theory R₀ (no rules) corresponds to (0,0)
 - Adding one rule never decreases p or n because adding a rule covers more examples (generalization)
 - The universal theory R+ (all examples are positive) corresponds to (N,P)



Rule Selection with Precision

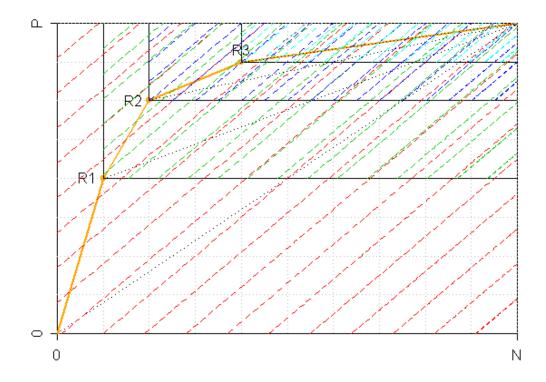
Precision tries to pick the steepest continuation of the curve

- tries to maximize the area under this curve (→ AUC: Area Under the ROC Curve)
- no particular angle of isometrics is preferred, i.e. no preference for a certain cost model



Accuracy assumes the same costs in all subspaces

• a local optimum in a sub-space is also a global optimum in the entire space



Which Heuristic is Best?

- There have been many proposals for different heuristics
 - and many different justifications for these proposals
 - some measures perform better on some datasets, others on other datasets
- Large-Scale Empirical Comparison:
 - 27 training datasets
 - on which parameters of the heuristics were tuned)
 - 30 independent datasets
 - which were not seen during optimization
 - Goals:
 - see which heuristics perform best
 - determine good parameter values for parametrized functions

TECHNISCHE Best Parameter Settings UNIVERSITÄT DARMSTADT for m-estimate: m = 22.5m-Estimate Р for relative cost metric: c = 0.342**Relative Linear Cost Metric** р 0 0 0 N 0 16 V3.0 | J. Fürnkranz Machine Learning and Data Mining | Learning Rule Sets $\langle \Rightarrow \rangle$

Empirical Comparison of Different Heuristics

	Training	Datasets	Independent Datasets			
Heuristic	Accuracy	# Conditions	Accuracy	#Conditions		
Ripper (JRip)	84,96	16,93	78,97	12,20		
Relative Cost Metric (c =0.342)	85,63	26,11	78,87	25,30		
m-Estimate (m = 22.466)	85,87	48,26	78,67	46,33		
Correlation	83,68	37,48	77,54	47,33		
Laplace	82,28	91,81	76,87	117,00		
Precision	82,36	101,63	76,22	128,37		
Linear Cost Metric (c = 0.437)	82,68	106,30	76,07	122,87		
WRA	82,87	14,22	75,82	12,00		
Accuracy	82,24	85,93	75,65	99,13		

- Ripper is best, but uses pruning (the others don't)
- the optimized parameters for the m-estimate and the relative cost metric perform better than all other heuristics
 - also on the 30 datasets on which they were not optimized
- some heuristics clearly overfit (bad performance with large rules)
- WRA over-generalizes (bad performance with small rules)

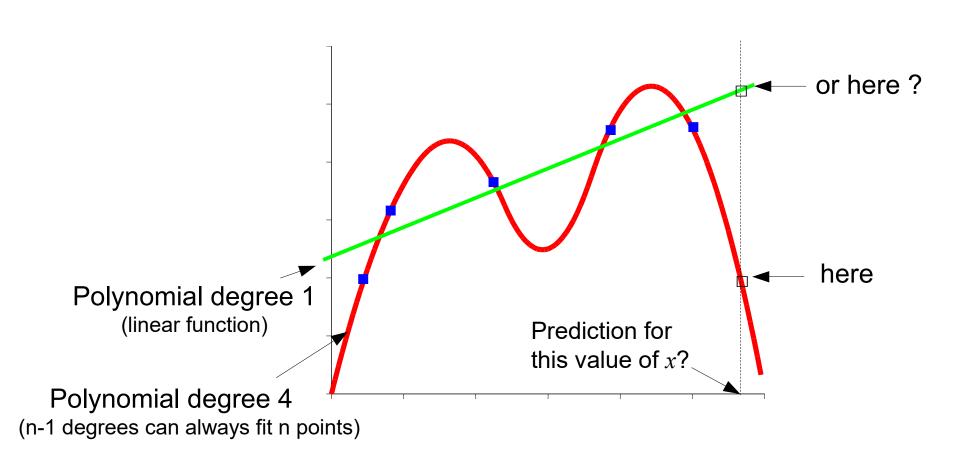
Overfitting

Overfitting

Given

- a fairly general model class
- enough degrees of freedom
- you can always find a model that explains the data
 - even if the data contains error (noise in the data)
 - in rule learning: each example is a rule
- Such concepts do not generalize well!
 → Pruning

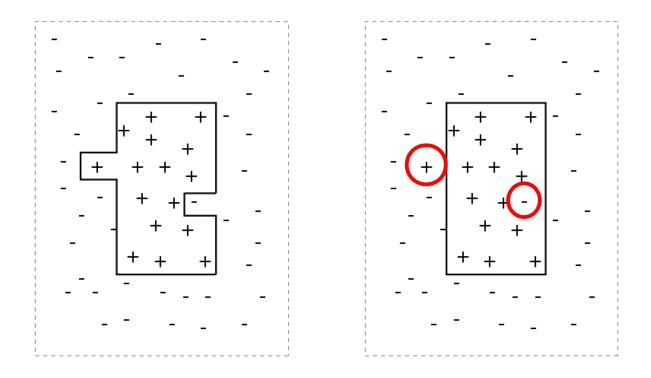
Overfitting - Illustration



Overfitting Avoidance

- A perfect fit to the data is not always a good idea
 - data could be imprecise
 - e.g., random noise
 - the hypothesis space may be inadequate
 - a perfect fit to the data might not even be possible
 - or it may be possible but with bad generalization properties (e.g., generating one rule for each training example)
- Thus it is often a good idea to avoid a perfect fit of the data
 - fitting polynomials so that
 - not all points are exactly on the curve
 - Iearning concepts so that
 - not all positive examples have to be covered by the theory
 - some negative examples may be covered by the theory

Overfitting Avoidance



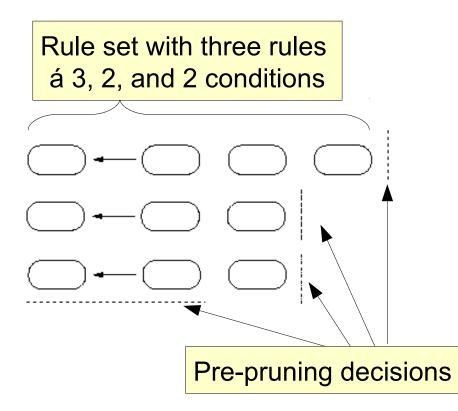
- Iearning concepts so that
 - not all positive examples have to be covered by the theory
 - some negative examples may be covered by the theory

Complexity of Concepts

- For simpler concepts there is less danger that they are able to overfit the data
 - for a polynomial of degree n one can choose n+1 parameters in order to fit the data points
- \rightarrow many learning algorithms focus on learning simple concepts
 - a short rule that covers many positive examples (but possibly also a few negatives) is often better than a long rule that covers only a few positive examples
- Pruning: Complex rules will be simplified
 - Pre-Pruning:
 - during learning
 - Post-Pruning:
 - after learning

Pre-Pruning

- keep a theory simple while it is learned
 - decide when to stop adding conditions to a rule (*relax consistency* constraint)
 - decide when to stop adding rules to a theory (*relax completeness* constraint)
 - efficient but not accurate



Pre-Pruning Heuristics

1. Thresholding a heuristic value

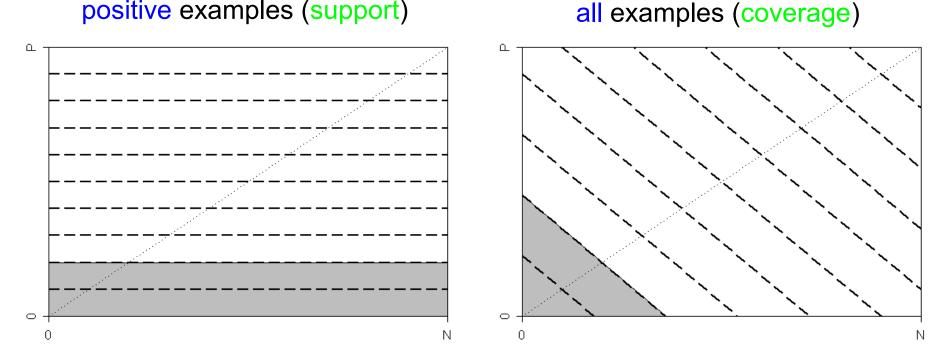
- require a certain minimum value of the search heuristic
- e.g.: Precision > 0.8.
- 2. Foil's Minimum Description Length Criterion
 - the length of the theory plus the exceptions (misclassified examples) must be shorter than the length of the examples by themselves
 - Iengths are measured in bits (information content)
- 3. CN2's Significance Test
 - tests whether the distribution of the examples covered by a rule deviates significantly from the distribution of the examples in the entire training set
 - if not, discard the rule

Machine Learning and Data Mining | Learning Rule Sets

Minimum Coverage Filtering

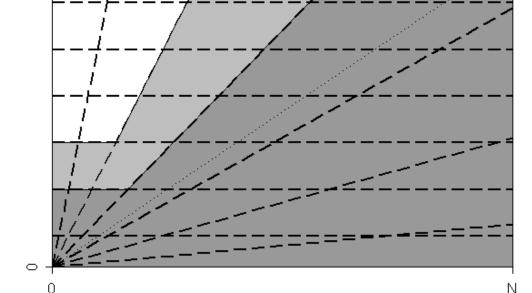
filter rules that do not cover a minimum number of

positive examples (support)



Support/Confidence Filtering

- basic idea:
 filter rules that
 - cover not enough positive examples (p < supp_{min})
 - are not precise enough (h_{prec} < conf_{min})
- effects:
 - all but a region around (0,P) is filtered



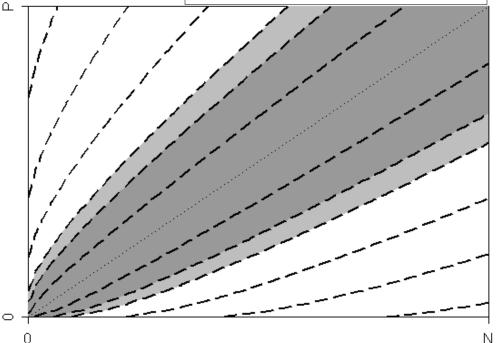
Û.

CN2's likelihood ratio statistics

$$h_{LRS} = 2(p \log \frac{p}{e_p} + n \log \frac{n}{e_n})$$

$$e_p = (p+n)\frac{P}{P+N}; \quad e_n = (p+n)\frac{N}{P+N}$$

are the expected number of positive and negative example in the p+n covered examples.

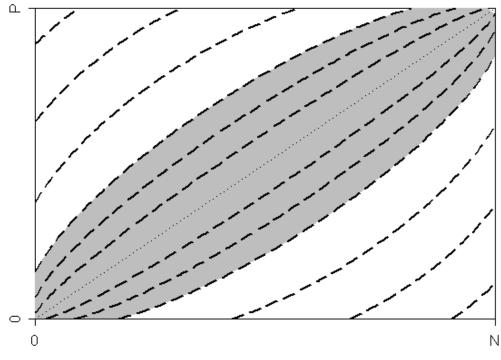


- basic idea: measure significant deviation from prior probability distribution
- effects:
 - non-linear isometrics
 - similar to m-estimate
 - but prefer rules near the edges
 - distributed χ^2
 - significance levels 95% (dark) and 99% (light grey)

Correlation

- basic idea: measure correlation coefficient of predictions with target
- effects:
 - non-linear isometrics
 - in comparison to WRA
 - prefers rules near the edges
 - steepness of connection of intersections with edges increases
 - equivalent to χ^2
 - grey area = cutoff of 0.3

$$h_{Corr} = \frac{p(N-n) - (P-p)n}{\sqrt{PN(p+n)(P-p+N-n)}}$$



MDL-Pruning in Foil

- based on the Minimum Description Length-Principle (MDL)
 - is it more effective to transmit the rule or the covered examples?
 - compute the information contents of the rule (in bits)
 - compute the information contents of the examples (in bits)
 - if the rule needs more bits than the examples it covers, on can directly transmit the examples → no need to further refine the rule
 - Details \rightarrow (Quinlan, 1990)
- doesn't work all that well
 - if rules have expections (i.e., are inconsistent), the negative examples must be encoded as well
 - they must be transmitted, otherwise the receiver could not reconstruct which examples do not conform to the rule
 - finding a minimal encoding (in the information-theoretic sense) is practically impossible

basic idea: compare the encoding length

of the rule l(r) to the encoding length h_{MDL} of the example.

we assume l(r) = c constant

effects:

costs for transmitting how

many examples we have

(can be ignored)

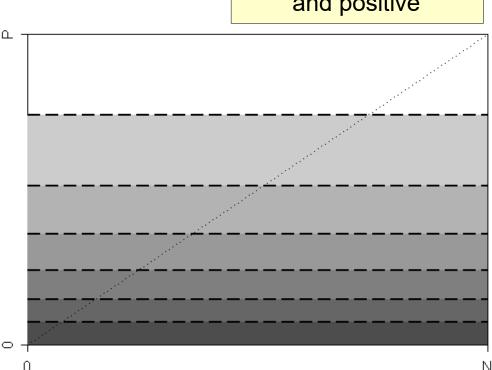
- equivalent to filtering on support
- because function only depends on p

Foil's MDL-based Stopping Criterion

 $h_{MDL} = \log_2(P+N) + \log_2$

31

costs for transmitting which of the *P*+*N* examples are covered and positive



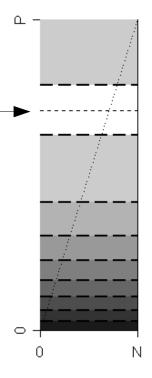
P+N

Anomaly of Foil's Stopping criterion

- We have tacitly assumed N > P...
- h_{MDL} assumes its maximum at p = (P+N)/2
 - thus, for P > N, the maximum is not on top!

there may be rules

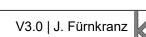
- of equal length
- covering the same number of negative examples
- so that the rule covering fewer positive examples is acceptable
- but the rule covering more positive examples is not!

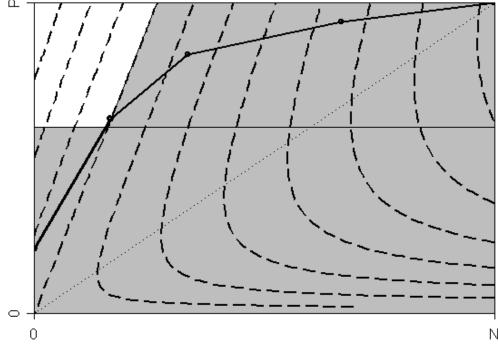


Machine Learning and Data Mining | Learning Rule Sets

How Foil Works

- \rightarrow Foil (almost) implements Support/Confidence Filtering (will be explained later \rightarrow association rules)
 - filtering of rules with no information gain
 - after each refinement step, the region of acceptable rules is adjusted as in precision/ confidence filtering
 - filtering of rules that exceed rule length
 - after each refinement step, the region of acceptable rules adjusted as in support filtering





Pre-Pruning Systems

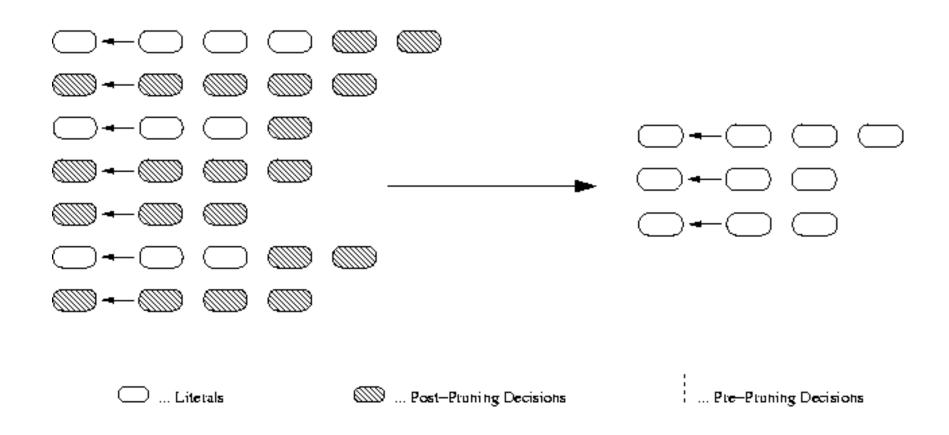
• Foil:

- Search heuristic: Foil Gain
- Pruning: MDL-Based

• CN2:

- Search heuristic: Laplace
- Pruning: Likelihood Ratio
- Fossil:
 - Search heuristic: Correlation
 - Pruning: Threshold

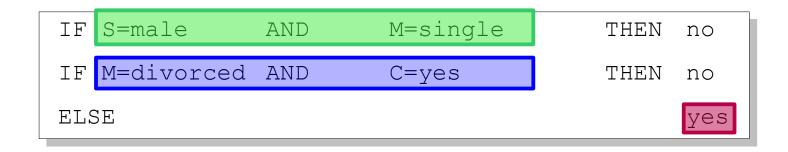
Post Pruning



Post-Pruning: Example

ΙF	E=primary	AND	S=male	AND	M=single	AND	C=no	THEN	no
ΙF	E=primary	AND	S=male	AND	M=single	AND	C=yes	THEN	no
ΙF	E=primary	AND	S=male	AND	M=married	AND	C=no	THEN	yes
ΙF	E=university	AND	S=female	AND	M=divorced	AND	C=no	THEN	yes
ΙF	E=university	AND	S=female	AND	M=married	AND	C=yes	THEN	yes
ΙF	E=secondary	AND	S=male	AND	M=single	AND	C=no	THEN	no
ΙF	E=university	AND	S=female	AND	M=single	AND	C=no	THEN	yes
ΙF	E=secondary	AND	S=female	AND	M=divorced	AND	C=no	THEN	yes
ΙF	E=secondary	AND	S=female	AND	M=single	AND	C=yes	THEN	yes
ΙF	E=secondary	AND	S=male	AND	M=married	AND	C=yes	THEN	yes
ΙF	E=primary	AND	S=female	AND	M=married	AND	C=no	THEN	yes
ΙF	E=secondary	AND	S=male	AND	M=divorced	AND	C=yes	THEN	no
ΙF	E=university	AND	S=female	AND	M=divorced	AND	C=yes	THEN	no
ΙF	E=secondary	AND	S=male	AND	M=divorced	AND	C=no	THEN	yes

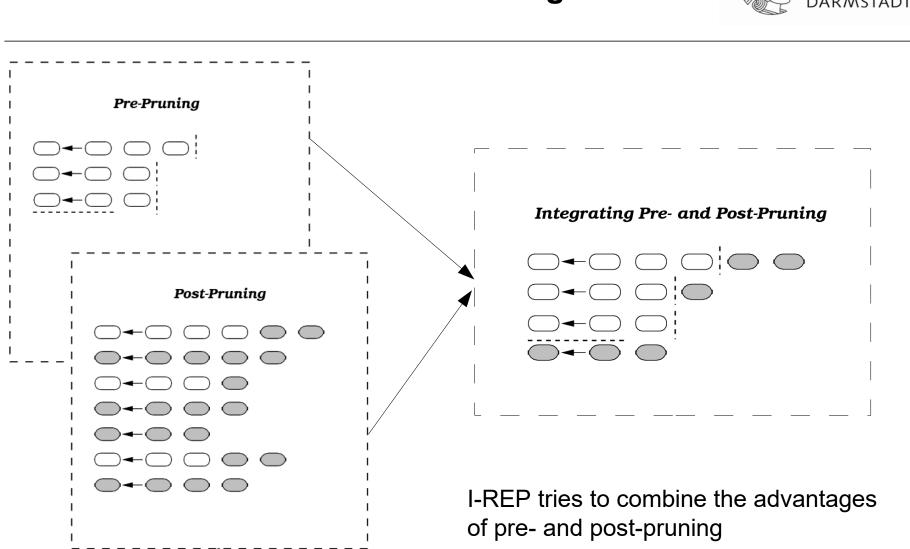
Post-Pruning: Example



Reduced Error Pruning

basic idea

- optimize the accuracy of a rule set on a separate pruning set
- 1. split training data into a growing and a pruning set
- 2. learn a complete and consistent rule set covering all positive examples and no negative examples in the growing set
- 3. as long as the error on the pruning set does not increase
 - delete condition or rule that results in the largest reduction of error on the pruning set
- 4. return the remaining rules
- REP is accurate but not efficient
 - O(*n*⁴)

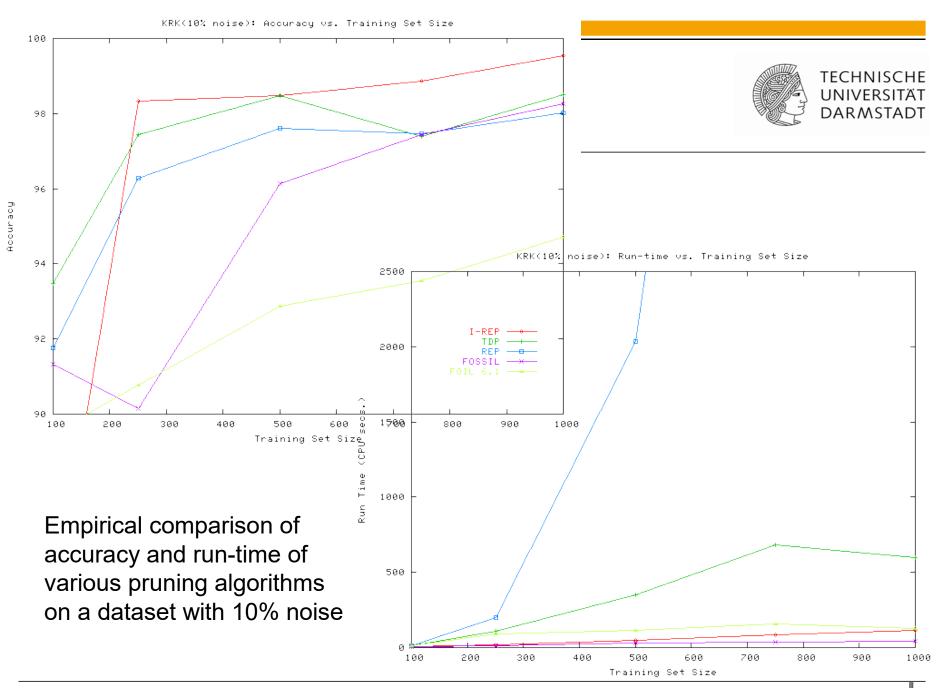


Incremental Reduced Error Pruning

Incremental Reduced Error Pruning

Prune each rule right after it is learned:

- 1. split training data into a growing and a pruning set
- 2. learn a consistent rule covering only positive examples
- 3. delete conditions as long as the error on the pruning set does not increase
- 4. if the rule is better than the default rule
 - add the rule to the rule set
 - goto 1.
- More accurate, much more efficient
 - because it does not learn overly complex intermediate concept
 - REP: $O(n^4)$ I-REP: $O(n \log^2 n)$
- Subsequently used in RIPPER rule learner (Cohen, 1995)
 - JRip in Weka



Multi-Class Classification

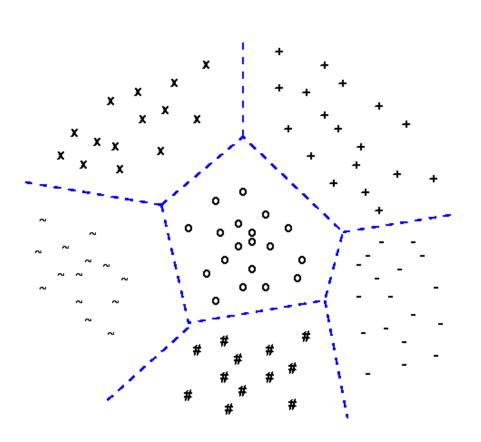
No.	Education	Marital S.	Sex.	Children?	Car
1	Primary	Single	М	N	Sports
2	Primary	Single	М	Y	Family
3	Primary	Married	М	N	Sports
4	University	Divorced	F	Ν	Mini
5	University	Married	F	Y	Mini
6	Secondary	Single	М	N	Sports
7	University	Single	F	N	Mini
8	Secondary	Divorced	F	N	Mini
9	Secondary	Single	F	Y	Mini
10	Secondary	Married	М	Y	Family
11	Primary	Married	F	N	Mini
12	Secondary	Divorced	М	Y	Family
13	University	Divorced	F	Y	Sports
14	Secondary	Divorced	М	N	Sports

Property of Interest ("class variable")

Multi-class problems

- GOAL: discriminate c
 classes from each other
- PROBLEM: many learning algorithms are only suitable for binary (2-class) problems
- SOLUTION: "Class binarization": Transform an *c*-class

problem into a series of 2class problems



Class Binarization for Rule Learning

None

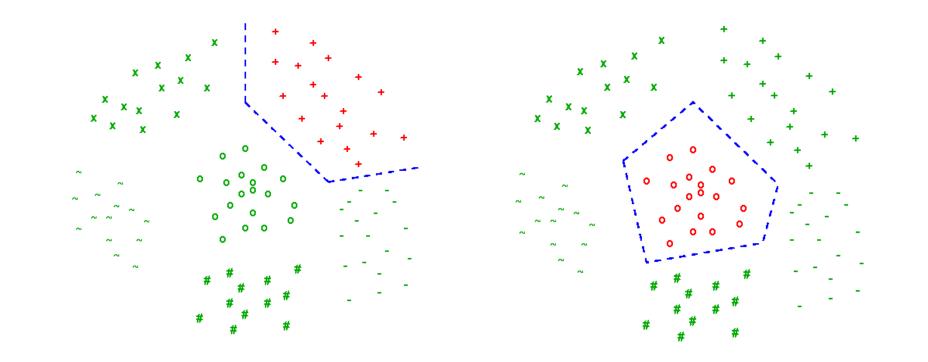
- class of a rule is defined by the majority of covered examples
- decision lists, CN2 (Clark & Niblett 1989)

One-against-all / unordered

- foreach class c: label its examples positive, all others negative
- CN2 (Clark & Boswell 1991), Ripper -a unordered
- Another variant in Ripper sorts the classes first and learns first against rest - remove first - repeat
- Pairwise Classification / one-vs-one
 - Learn one rule-set for each pair of classes
- Error Correcting Output Codes (Dietterich & Bakiri, 1995)
 - generalized by (Allwein, Schapire, & Singer, JMLR 2000)
 - \rightarrow Ensemble Methods

One-against-all binarization

TECHNISCHE UNIVERSITÄT DARMSTADT



Treat each class as a separate concept:

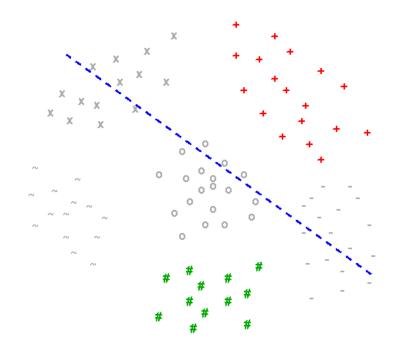
- c binary problems, one for each class
- Iabel examples of one class positive, all others negative

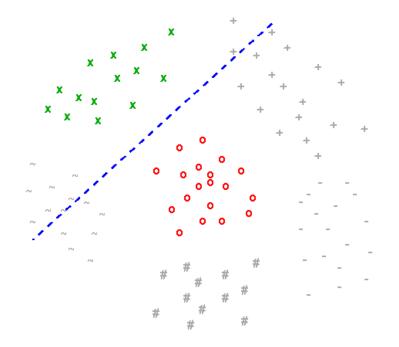
Prediction

- It can happen that multiple rules fire for a example
 - no problem for concept learning (all rules say +)
 - but problematic for multi-class learning
 - because each rule may predict a different class
 - Typical solution:
 - use rule with the highest (Laplace) precision for prediction
 - more complex approaches are possible: e.g., voting
- It can happen that no rule fires on a example
 - no problem for concept learning (the example is then -)
 - but problematic for multi-class learning
 - because it remains unclear which class to select
 - Typical solution: predict the largest class
 - more complex approaches:
 - e.g., rule stretching: find the most similar rule to an example
 - \rightarrow similarity-based learning methods

Pairwise Classification

- c(c-1)/2 problems
- each class against each other class





- smaller training sets
- simpler decision boundaries
- larger margins

Prediction

• Voting:

- as in a sports tournament:
 - each class is a player
 - each player plays each other player, i.e., for each pair of classes we get a prediction which class "wins"
 - the winner receives a point
 - the class with the most points is predicted
 - tie breaks, e.g., in favor of larger classes
- Weighted voting:
 - the vote of each theory is proportional to its own estimate of its correctness
 - e.g., proportional to proportion of examples of the predicted class covered by the rule that makes the prediction

Accuracy

one-vs-all pairwise						
	Ripper		V			
dataset	unord.	ordered	\mathbf{R}^3	ratio	<	
abalone	81.03	82.18	72.99	0.888	++	
covertype	35.37	38.50	33.20	0.862	++	
letter	15.22	15.75	7.85	0.498	++	
sat	14.25	17.05	11.15	0.654	++	
shuttle	0.03	0.06	0.02	0.375	=	
vowel	64.94	53.25	53.46	1.004	=	
car	5.79	12.15	2.26	0.186	++	
glass	35.51	34.58	25.70	0.743	++	
image	4.15	4.29	3.46	0.808	+	
lr spectrometer	64.22	61.39	53.11	0.865	++	
optical	7.79	9.48	3.74	0.394	++	
page-blocks	2.85	3.38	2.76	0.816	++	
solar flares (c)	15.91	15.91	15.77	0.991	=	
solar flares (m)	4.90	5.47	5.04	0.921	=	
soybean	8.79	8.79	6.30	0.717	++	
thyroid (hyper)	1.25	1.49	1.11	0.749	+	
thyroid (hypo)	0.64	0.56	0.53	0.955	=	
thyroid (repl.)	1.17	0.98	1.01	1.026	=	
vehicle	28.25	30.38	29.08	0.957	=	
yeast	44.00	42.39	41.78	0.986	=	
average	21.80	21.90	18.52	0.770		

error rates on 20
datasets with 4 or
more classes

- 10 significantly better (p > 0.99, McNemar)
- 2 significantly better (p > 0.95)
- 8 equal
- never (significantly) worse

Advantages of the Pairwise Approach

Accuracy

- better than one-against-all (also in independent studies)
- improvement appr. on par with 10 boosting iterations
- Example Size Reduction
 - subtasks might fit into memory where entire task does not

Stability

- simpler boundaries/concepts with possibly larger margins
- Understandability
 - similar to pairwise ranking as recommended by Pyle (1999)

Parallelizable

- each task is independent of all other tasks
- Modularity
 - train binary classifiers once
 - can be used with different combiners
- Ranking ability
 - provides a ranking of classes for free
- Complexity?
 - we have to learn a quadratic number of theories...
 - but with fewer examples

Training Complexity of PC

Lemma: The total number of training examples for all binary classifiers in a pairwise classification ensemble is $(c-1)\cdot n$

Proof:

• each of the *n* training examples occurs in all binary tasks where its class is paired with one of the other c-1 classes

Theorem: For learning algorithms with at least linear complexity, pairwise classification is more efficient than one-against-all.

Proof Sketch:

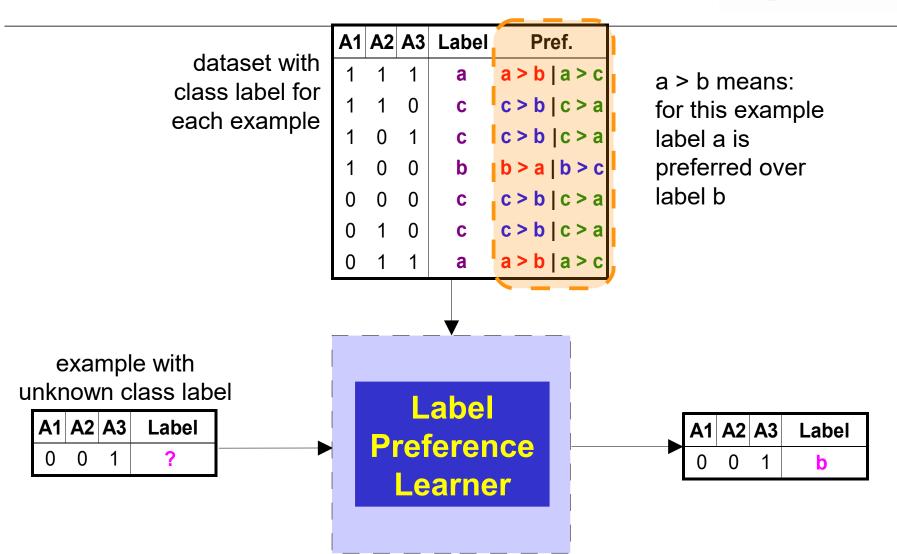
- one-against-all binarization needs a total of $c \cdot n$ examples
- fewer training examples are distributed over more classifiers
- more small training sets are faster to train than few large training sets
- for complexity $f(n) = n^o (o > 1)$: $o > 1 \rightarrow \sum n_i^o < (\sum n_i)^o$

Preference Data

No.	Education	Marital S.	Sex.	Children?	Car Preferences
1	Primary	Single	М	N	Sports > Family
2	Primary	Single	М	Y	Family > Sports, Family > Mini
3	Primary	Married	М	Ν	Sports > Family > Mini
4	University	Divorced	F	N	Mini > Family
5	University	Married	F	Y	Mini > Sports
6	Secondary	Single	М	N	Sports > Mini > Family
7	University	Single	F	N	Mini > Family, Mini > Sports
8	Secondary	Divorced	F	Ν	Mini > Sports
9	Secondary	Single	F	Y	Mini > Sports, Family > Sports
10	Secondary	Married	М	Y	Family > Mini
11	Primary	Married	F	N	Mini > Family
12	Secondary	Divorced	М	Y	Family > Sports > Mini
13	University	Divorced	F	Y	Sports > Mini, Family > Mini
14	Secondary	Divorced	М	Ν	Sports > Mini

 $\langle - \rangle$

Class Information encodes Preferences



General Label Preference Learning Problem

A2 **A**3 Pref. **A1** dataset with a > b | b > c 1 preferences for 1 0 1 a > b | c > b each example Each example 0 1 1 b > amay have an 0 0 **b > a | a > c | c > b** 1 arbitrary 0 0 0 c > anumber 1 0 0 **c > b** | c > a of preferences 1 0 a > c We typically predict a complete ranking example with (a total order) unknown preferences Label A3 Pref. A2 A1 A2 A3 Pref. A1 Preference 0 0 0 b > a > Learner

Label Ranking

- Preference learning scenario in which
 - contexts are characterized by features
 - no information about the items is given except a unique name (a label)

GIVEN:

- a set of *labels*:
- a set of contexts:
- for each training context ek:
 - a set of preferences

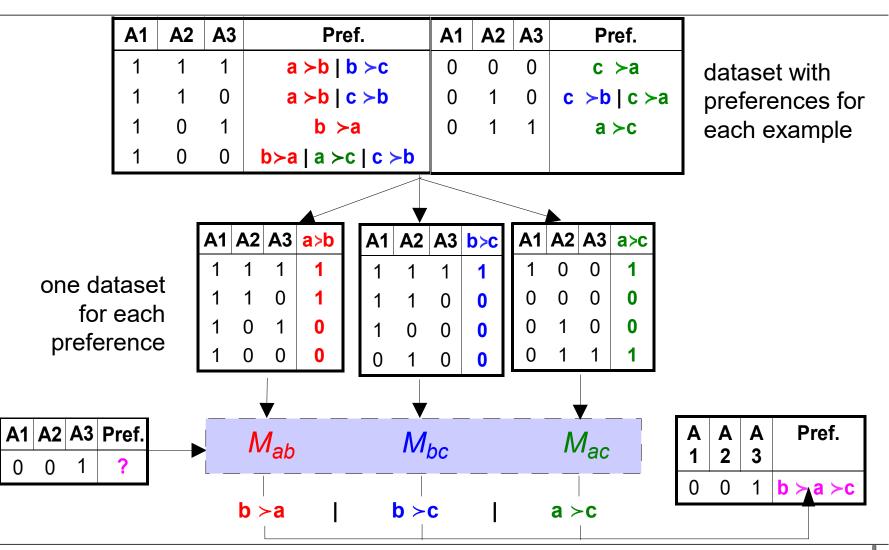
$$L = \{\lambda_i | i = 1 \dots c\}$$
$$E = \{e_k | k = 1 \dots n\}$$

$$P_k = \{\lambda_i \succ_k \lambda_j\} \subseteq L x L$$

FIND:

a label ranking function that orders the labels for any given context

Pairwise Preference Learning



Machine Learning and Data Mining | Learning Rule Sets

A Multilabel Database

No.	Education	Marital S.	Sex.	Children?	Quality	Tabloid	Fashion	Sports
1	Primary	Single	М	Ν	0	0	0	0
2	Primary	Single	М	Y	0	0	0	1
3	Primary	Married	М	Ν	0	0	0	0
4	University	Divorced	F	N	1	1	1	0
5	University	Married	F	Y	1	0	1	0
6	Secondary	Single	М	N	0	1	0	0
7	University	Single	F	Ν	1	1	0	0
8	Secondary	Divorced	F	N	1	0	0	1
9	Secondary	Single	F	Y	0	1	1	0
10	Secondary	Married	М	Y	1	1	0	1
11	Primary	Married	F	Ν	1	0	0	0
12	Secondary	Divorced	М	Y	0	1	0	0
13	University	Divorced	F	Y	0	1	1	0
14	Secondary	Divorced	М	N	1	0	0	1

 \ominus

Multi-Label Classification

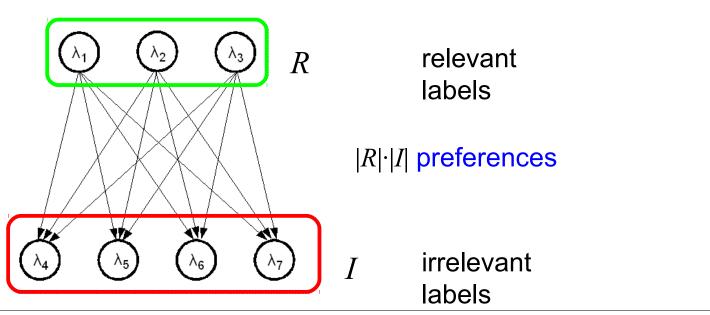
Multilabel Classification:

- each context is associated with multiple labels
 - e.g., keyword assignments to texts
- Relevant labels R for an example
 - those that should be assigned to the example
- Irrelevant labels $I = L \setminus R$ for an example
 - those that should not be assigned to the examples
- Simple solution:
 - Predict each label independently (Binary Relevance / one-vs-all)
- Key Challenge:
 - The prediction tasks are not independent!

Pairwise Multi-Label Ranking

TECHNISCHE UNIVERSITÄT DARMSTADT

 Tranformation of Multi-Label Classification problems into preference learning problems is straight-forward



at prediction time, the pairwise ensemble predicts a label ranking

Problem:

Where to draw boundary between relevant and irrelevant labels?

less relevant than all relevant classes more relevant than all irrelevant classes

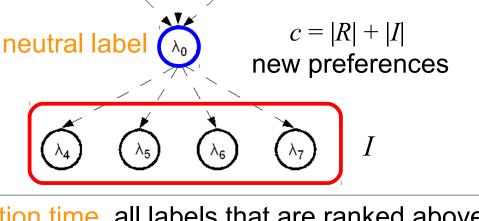
the neutral label is

Calibrated Multi-Label PC

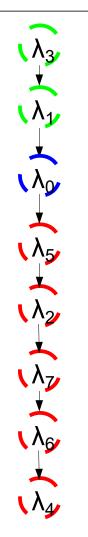
Key idea:

at prediction time, all labels that are ranked above the neutral label are predicted to be relevant

introduce a neutral label into the preference scheme



R



EuroVOC Classification of EC Legal Texts

Eur-Lex database ■ ≈ 20,000 documents ■ ≈ 4,000 labels	Title and reference Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer programs Classifications
■ ≈ 5 labels per document	EUROVOC descriptor – data-processing law, computer piracy, copyright, software, approximation of laws
 Pairwise modeling approach learns ≈8,000,000 perceptrons memory-efficient dual 	Directory code – 17.20.00.00 Law relating to undertakings / Intellectual property law Subject matter – Internal market, Industrial and commercial property Text
representation necessary	COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer programs (91/250/EEC)
Docultor	THE COUNCIL OF THE EUROPEAN COMMUNITIES, Having regard to the Treaty establishing the European Economic Community and in particular Article 100a thereof,

Results:

- average precision of pairwise method is almost 50%
 - \rightarrow on average, the 5 relevant labels can be found within the first 10 labels of the ranking of all 4000 labels
- one-against-all methods (BR and MMP) had an avg. precision < 30%</p>

Current Work: Graded Multilabel Classification

- Relevance of multiple labels is assessed on an ordered scale
 - can also be reduced to pairwise comparisons

Die etwas anderen Cops					
	Spaß	Action	Erotik	Spannung	Anspruch
1 200					•
Eine Frage der Ehre MILITÄR-DRAMA	Spaß	Action	Erotik	Spannung	Anspruch
		••		•	
Spiel mir das Lied vom Tod WESTERN					
The state of the states	Spaß	Action	Erotik	Spannung	Anspruch
			•		
Dirty Dancing					
	Spaß	Action	Erotik	Spannung	Gefühl
		•	•		

Current Work

Multilabel Rule Learning

- The key challenge in multi-label classification is to model the dependencies between the labels
 - much of current research in this area is devoted to this topic
- Rules can make these dependencies explicit and exploit them in the learning phase
 - regular rule: university, female → quality, fashion
 - Iabel dependency: fashion ≠ sports
 - mixed rule: university, tabloid -> quality

Regression

No	Education	Marital S.	Sex.	Children?	Income	
1	Primary	Single	М	N	20,000	
2	Primary	Single	М	Y	23,000	
3	Primary	Married	М	Ν	25,000	
4	University	Divorced	F	Ν	50,000	
5	University	Married	F	Y	60,000	
6	Secondary	Single	М	Ν	45,000	Numeric Target
7	University	Single	F	Ν	80,000	Variable
8	Secondary	Divorced	F	Ν	55,000	
9	Secondary	Single	F	Y	30,000	
10	Secondary	Married	М	Y	75,000	
11	Primary	Married	F	Ν	35,000	
12	Secondary	Divorced	М	Y	70,000	
13	University	Divorced	F	Y	65,000	
14	Secondary	Divorced	М	Ν	38,000	▼

 $\langle \Rightarrow \rangle$

Rule-Based Regression

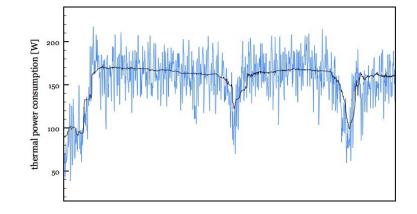
- Regression trees are quite successful
- Work on directly learning regression rules was not yet able to match that performance
 - Main Problem: How to define a good heuristic?
- Transformation approach:
 - Reduce regression to classification
 - use the idea of ε-insensitive loss functions proposed for SVMS:
 - all examples in an ε-environment of the value predicted in the rule head are considered to be positive, all others negative
 - rules can then be learned using regular heuristics for classification rules

 $|y - y_{\mathbf{r}}| = 0 - \frac{\text{positive}}{|y - y_{\mathbf{r}}| > t_{\mathbf{r}}}$ $|y - y_{\mathbf{r}}| = t_{\mathbf{r}}$ $|y - y_{\mathbf{r}}| \le t_{\mathbf{r}}$ $|y - y_{\mathbf{r}}| > t_{\mathbf{r}}$

Application Example: Venus Express Power Consumption

Goal

- Learn a model of the energy consumption of the heating system of the Venus express
- Approach
 - Information about the consumption is available in hindsight
 - can be used to train a model
 - Best results obtained with ensembles of regression trees
 - Iocal differences cannot be modeled
 - but trends can be captured well
- Partner
 - ESA / ESOC
 - University of Cordoba



Summary

- Rules can be learned via top-down hill-climbing
 - add one condition at a time until the rule covers no more negative exs.
- Heuristics are needed for guiding the search
 - can be visualize through isometrics in coverage space
- Rule Sets can be learned one rule at a time
 - using the covering or separate-and conquer strategy
- Overfitting is a serious problem for all machine learning algorithms
 too close a fit to the training data may result in bad generalizations
- Pruning can be used to fight overfitting
 - Pre-pruning and post-pruning can be efficiently integrated
- Multi-class problems can be addressed by multiple rule sets
 - one-against-all classification or pairwise classification