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Learning Rule Sets

 many datasets cannot be solved with a single rule

 not even the simple weather dataset

 they need a rule set for formulating a target theory

 finding a computable generality relation for rule sets is not trivial

 adding a condition to a rule specializes the theory

 adding a new rule to a theory generalizes the theory

 practical algorithms use different approaches

 covering or separate-and-conquer algorithms

 based on heuristic search
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A Sample Database

 No. Education Marital S. Sex. Children? Approved?

1 Primary Single M N -

2 Primary Single M Y -

3 Primary Married M N +

4 University Divorced F N +

5 University Married F Y +

6 Secondary Single M N -

7 University Single F N +

8 Secondary Divorced F N +

9 Secondary Single F Y +

10 Secondary Married M Y +

11 Primary Married F N +

12 Secondary Divorced M Y -

13 University Divorced F Y -

14 Secondary Divorced M N +

Property of Interest
(“class variable”)
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A Learned Rule Set

IF E=primary    AND S=male   AND M=married  AND C=no    THEN yes 
IF E=university AND S=female AND M=divorced AND C=no    THEN yes 
IF E=university AND S=female AND M=married  AND C=yes   THEN yes 
IF E=university AND S=female AND M=single   AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes   THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes   THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no    THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=no    THEN yes
ELSE no

IF E=primary    AND S=male   AND M=married  AND C=no    THEN yes 
IF E=university AND S=female AND M=divorced AND C=no    THEN yes 
IF E=university AND S=female AND M=married  AND C=yes   THEN yes 
IF E=university AND S=female AND M=single   AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes   THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes   THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no    THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=no    THEN yes
ELSE no

 The solution is 
 a set of rules 
 that is complete and consistent on the training examples

→ it must be part of the version space
 but it does not generalize to new examples!
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The Need for a Bias

 rule sets can be generalized by 
 generalizing an existing rule (as in (Batch-)Find-S)
 introducing  a new rule (this is new)

 a minimal generalization could be
 introduce a new rule that covers only the new example

 Thus:
 The solution on the previous slide will be found as a result of the FindS 

algorithm
 FindG (or Batch-FindG) are less likely to find such a bad solution 

because they prefer general theories

 But in principle this solution is part of the hypothesis space and 
also of the version space
⇒ we need a search bias to prevent finding this solution!
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A Better Solution

IF Marital = married                     THEN yes

IF Marital = single   AND Sex = female   THEN yes

IF Marital = divorced AND Children = no  THEN yes

ELSE no

IF Marital = married                     THEN yes

IF Marital = single   AND Sex = female   THEN yes

IF Marital = divorced AND Children = no  THEN yes

ELSE no
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Recap: Subgroup Discovery

 Abstract algorithm for learning a single rule:

1. Start with an empty theory T and training set E

2. Learn a single (consistent) rule R from E and add it to T  

3. return T

 Problem:
 the basic assumption is that the found rules are complete, i.e., they 

cover all positive examples
 What if they don't?

 Simple solution:
 If we have a rule that covers part of the positive examples:
 add some more rules that cover the remaining examples
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Key idea of Covering algorithms

Properties of Subgroup Discovery algorithms:
 Consistency can always be maximized 
 a rule that covers no negative examples can always be found

 Completeness can not necessarily be ensured
 Many concepts can only be formulated with multiple rules

Learning strategy:
 Try to learn a rule that is as consistent as possible
 Fix completeness by repeating this step until each (positive) 

training example is covered by at least one rule
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Relaxing Completeness and Consistency

 So far we have defined correctness on training data as 
consistency + completeness
 → we aim for a rule that covers all positive and no negative examples

 This is not always a good idea (→ overfitting)

 Example:

Training set with 200 examples, 100 positive and 100 negative
 Rule Set A consists of 100 complex rules, each covering a single 

positive example and no negatives

→ A is complete and consistent on the training set
 Rule Set B consists of a single rule, covering 99 positive and 1 

negative example

→ B is incomplete and inconsistent on the training set

 Which one will generalize better to unseen examples?
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Separate-and-Conquer 
Rule Learning

 Learn a set of rules, one rule after the other using greedy covering

1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T  
3. If T is satisfactory (complete), return T
4. Else:

Separate: Remove examples explained by R from E
Conquer:  goto 2.

 One of the oldest family of learning algorithms
 Different learners differ in how they find a single rule 
 Completeness and consistency requirements are typically 

loosened
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Separate-and-Conquer Rule Learning

``

Quelle für Grafiken: http://www.cl.uni-heidelberg.de/kurs/ws03/einfki/KI-2004-01-13.pdf
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Covering Strategy

 Covering or Separate-and-Conquer rule learning learning 
algorithms learn one rule at a time
 and then removes the examples covered by this rule

 This corresponds to a path
in coverage space:
 The empty theory R0 (no rules) 

corresponds to (0,0)
 Adding one rule never 

decreases p or n because 
adding a rule covers more 
examples (generalization)

 The universal theory R+ 
(all examples are positive) 
corresponds to (N,P)

+
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Rule Selection with Precision 

 Precision tries to pick the steepest continuation of the curve 
 tries to maximize the area under this curve 

(→ AUC: Area Under the ROC Curve)
 no particular angle of isometrics is preferred, i.e. no preference for a certain 

cost model
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Rule Selection with Accuracy

 Accuracy assumes the same costs in all subspaces
 a local optimum in a sub-space is also a global optimum in the entire space
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Which Heuristic is Best?

 There have been many proposals for different heuristics
 and many different justifications for these proposals
 some measures perform better on some datasets, others on other 

datasets

 Large-Scale Empirical Comparison:
 27 training datasets 
 on which parameters of the heuristics were tuned)

 30 independent datasets 
 which were not seen during optimization

 Goals:
 see which heuristics perform best
 determine good parameter values for parametrized functions
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Best Parameter Settings

       for m-estimate: m = 22.5

   for relative cost metric: c = 0.342
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Empirical Comparison of Different Heuristics

Training

84,96 16,93 78,97 12,20
85,63 26,11 78,87 25,30
85,87 48,26 78,67 46,33
83,68 37,48 77,54 47,33

Laplace 82,28 91,81 76,87 117,00
82,36 101,63 76,22 128,37
82,68 106,30 76,07 122,87

WRA 82,87 14,22 75,82 12,00
82,24 85,93 75,65 99,13

 Datasets Independent Datasets
Heuristic Accuracy # Conditions Accuracy  #Conditions
Ripper (JRip)
Relative Cost Metric (c =0.342)
m-Estimate (m = 22.466)
Correlation

Precision
Linear Cost Metric (c = 0.437)

Accuracy

 Ripper is best, but uses pruning (the others don't)
 the optimized parameters for the m-estimate and the relative cost 

metric perform better than all other heuristics
 also on the 30 datasets on which they were not optimized

 some heuristics clearly overfit (bad performance with large rules)
 WRA over-generalizes (bad performance with small rules)
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Overfitting 

 Overfitting
 Given 
 a fairly general model class 
 enough degrees of freedom

 you can always find a model that explains the data
 even if the data contains error (noise in the data)
 in rule learning: each example is a rule

 Such concepts do not generalize well!
→ Pruning



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 20

 

 

 
 

 

Overfitting - Illustration

Prediction for 
this value of x?

Polynomial degree 1
(linear function)

    Polynomial degree 4
(n-1 degrees can always fit n points)

□ here

□ or here ?
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Overfitting Avoidance

 A perfect fit to the data is not always a good idea
 data could be imprecise
 e.g., random noise

 the hypothesis space may be inadequate
 a perfect fit to the data might not even be possible
 or it may be possible but with bad generalization properties

(e.g., generating one rule for each training example)

 Thus it is often a good idea to avoid a perfect fit of the data
 fitting polynomials so that 
 not all points are exactly on the curve

 learning concepts so that 
 not all positive examples have to be covered by the theory
 some negative examples may be covered by the theory
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Overfitting Avoidance

 learning concepts so that 
 not all positive examples have to be covered by the theory
 some negative examples may be covered by the theory
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Complexity of Concepts

 For simpler concepts there is less danger that they are able to 
overfit the data
 for a polynomial of degree n one can choose n+1 parameters in order 

to fit the data points

→ many learning algorithms focus on learning simple concepts
 a short rule that covers many positive examples (but possibly also a 

few negatives) is often better than a long rule that covers only a few 
positive examples

 Pruning: Complex rules will be simplified
 Pre-Pruning:
 during learning

 Post-Pruning:
 after learning
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Pre-Pruning 

 keep a theory simple while it 
is learned
 decide when to stop adding 

conditions to a rule 
(relax consistency 
constraint)

 decide when to stop adding 
rules to a theory
(relax completeness 
constraint)

 efficient but not accurate

Rule set with three rules 
á 3, 2, and 2 conditions

Pre-pruning decisions
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Pre-Pruning Heuristics

1. Thresholding a heuristic value
 require a certain minimum value of the search heuristic
 e.g.: Precision > 0.8.

2. Foil's Minimum Description Length Criterion
 the length of the theory plus the exceptions (misclassified examples) 

must be shorter than the length of the examples by themselves
 lengths are measured in bits (information content)

3. CN2's Significance Test
 tests whether the distribution of the examples covered by a rule 

deviates significantly from the distribution of the examples in the entire 
training set

 if not, discard the rule
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Minimum Coverage Filtering

         positive examples (support)              all examples (coverage)

filter rules that do not cover a minimum number of  
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Support/Confidence Filtering

 basic idea:
filter rules that
 cover not enough positive 

examples (p < suppmin)

 are not precise enough 
(hprec < confmin)

 effects:
 all but a region around (0,P) 

is filtered

→  we will return to support/confidence in the context of      
association rule learning algorithms! 
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CN2's likelihood ratio statistics

 basic idea:
measure significant deviation 
from prior probability distribution

 effects:
 non-linear isometrics
 similar to m-estimate
 but prefer rules near the 

edges
 distributed χ2

 significance levels 95% (dark) 
and 99% (light grey)

hLRS=2 p log
p

e p

n log
n
en


e p= pn

P
PN

; en= pn
N

PN

are the expected number of 
positive and negative example
in the p+n covered examples.
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Correlation

 basic idea:
measure correlation coefficient
of predictions with target

 effects:
 non-linear isometrics
 in comparison to WRA
 prefers rules near the edges
 steepness of connection of 

intersections with edges 
increases

 equivalent to χ2

 grey area = cutoff of 0.3

hCorr=
p N−n−P− pn

PN  pnP− pN−n
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MDL-Pruning in Foil

 based on the Minimum Description Length-Principle (MDL)
 is it more effective to transmit the rule or the covered examples?
 compute the information contents of the rule (in bits)
 compute the information contents of the examples (in bits)
 if the rule needs more bits than the examples it covers, on can directly 

transmit the examples → no need to further refine the rule

 Details → (Quinlan, 1990)

 doesn't work all that well
 if rules have expections (i.e., are inconsistent), the negative examples 

must be encoded as well
 they must be transmitted, otherwise the receiver could not reconstruct which 

examples do not conform to the rule

 finding a minimal encoding (in the information-theoretic sense) is 
practically impossible
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Foil's MDL-based Stopping Criterion

 basic idea:
compare the encoding length 
of the rule l(r) to the encoding 
length hMDL of the example.
 we assume l(r) = c constant

 effects:
 equivalent to filtering on 

support
 because function only 

depends on p

hMDL=log2 PN log2 PN
p  costs for transmitting

which of the P+N
examples are covered

and positive

costs for transmitting how 
many examples we have 

(can be ignored)
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Anomaly of Foil's Stopping criterion

 We have tacitly assumed N > P...

 hMDL assumes its maximum at  p = (P+N)/2
 thus, for P > N, the maximum is not on top!

 there may be rules 
 of equal length
 covering the same number of negative examples

 so that the rule covering fewer positive examples is 
acceptable

 but the rule covering more positive examples is not!
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How Foil Works

 filtering of rules with no 
information gain
 after each refinement step,

the region of acceptable rules
is adjusted as in precision/
confidence filtering

 filtering of rules that exceed the 
rule length
 after each refinement step, 

the region of acceptable rules is 
adjusted as in support filtering

→ Foil (almost) implements Support/Confidence Filtering
      (will be explained later → association rules)
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Pre-Pruning Systems

 Foil:
 Search heuristic: Foil Gain
 Pruning: MDL-Based

 CN2:
 Search heuristic: Laplace
 Pruning: Likelihood Ratio

 Fossil:
 Search heuristic: Correlation
 Pruning: Threshold
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Post Pruning
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Post-Pruning: Example

IF E=primary    AND S=male   AND M=single   AND C=no  THEN no
IF E=primary    AND S=male   AND M=single   AND C=yes THEN no 
IF E=primary    AND S=male   AND M=married  AND C=no  THEN yes 
IF E=university AND S=female AND M=divorced AND C=no  THEN yes 
IF E=university AND S=female AND M=married  AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=single   AND C=no  THEN no 
IF E=university AND S=female AND M=single   AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no  THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=yes THEN no 
IF E=university AND S=female AND M=divorced AND C=yes THEN no 
IF E=secondary  AND S=male   AND M=divorced AND C=no  THEN yes

IF E=primary    AND S=male   AND M=single   AND C=no  THEN no
IF E=primary    AND S=male   AND M=single   AND C=yes THEN no 
IF E=primary    AND S=male   AND M=married  AND C=no  THEN yes 
IF E=university AND S=female AND M=divorced AND C=no  THEN yes 
IF E=university AND S=female AND M=married  AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=single   AND C=no  THEN no 
IF E=university AND S=female AND M=single   AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no  THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=yes THEN no 
IF E=university AND S=female AND M=divorced AND C=yes THEN no 
IF E=secondary  AND S=male   AND M=divorced AND C=no  THEN yes
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IF S=male AND M=single THEN no

IF M=divorced AND C=yes THEN no 

ELSE  yes

IF S=male AND M=single THEN no

IF M=divorced AND C=yes THEN no 

ELSE  yes

Post-Pruning: Example
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Reduced Error Pruning 

 basic idea
 optimize the accuracy of a rule set on a separate pruning set

1. split training data into a growing and a pruning set

2. learn a complete and consistent rule set covering all positive examples 
and no negative examples in the growing set

3. as long as the error on the pruning set does not increase
 delete condition or rule that results in the largest reduction of error on the 

pruning set

4. return the remaining rules

 REP is accurate but not efficient 
 O(n4)
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Incremental Reduced Error Pruning

I-REP tries to combine the advantages
of pre- and post-pruning
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Incremental Reduced Error Pruning

 Prune each rule right after it is learned:

1. split training data into a growing and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does not 
increase

4. if the rule is better than the default rule
 add the rule to the rule set
 goto 1.

 More accurate, much more efficient
 because it does not learn overly complex intermediate concept
 REP: O(n4)         I-REP: O(n log2n)

 Subsequently used in RIPPER rule learner (Cohen, 1995)
 JRip in Weka
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Empirical comparison of 
accuracy and run-time of 
various pruning algorithms 
on a dataset with 10% noise
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Multi-Class Classification

 No. Education Marital S. Sex. Children? Car

1 Primary Single M N Sports

2 Primary Single M Y Family

3 Primary Married M N Sports

4 University Divorced F N Mini

5 University Married F Y Mini

6 Secondary Single M N Sports

7 University Single F N Mini

8 Secondary Divorced F N Mini

9 Secondary Single F Y Mini

10 Secondary Married M Y Family

11 Primary Married F N Mini

12 Secondary Divorced M Y Family

13 University Divorced F Y Sports

14 Secondary Divorced M N Sports

Property of Interest
(“class variable”)
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Multi-class problems 

 GOAL: discriminate c 
classes from each other

 PROBLEM: many learning 
algorithms are only suitable 
for binary (2-class) problems

 SOLUTION: 
"Class binarization": 
Transform an c-class 
problem into a series of 2-
class problems
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Class Binarization for Rule Learning

 None
 class of a rule is defined by the majority of covered examples
 decision lists, CN2 (Clark & Niblett 1989)

 One-against-all / unordered
 foreach class c: label its examples positive, all others negative
 CN2 (Clark & Boswell 1991), Ripper -a unordered 
 Another variant in Ripper sorts the classes first and learns first against 

rest - remove first - repeat

 Pairwise Classification / one-vs-one
 Learn one rule-set for each pair of classes 

 Error Correcting Output Codes (Dietterich & Bakiri, 1995)
 generalized by (Allwein, Schapire, & Singer, JMLR 2000)

→ Ensemble Methods
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One-against-all binarization

Treat each class as a separate concept:
 c binary problems, one for each class
 label examples of one class positive, all others negative
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Prediction

 It can happen that multiple rules fire for a example
 no problem for concept learning (all rules say +)
 but problematic for multi-class learning
 because each rule may predict a different class

 Typical solution: 
 use rule with the highest (Laplace) precision for prediction

 more complex approaches are possible: e.g., voting

 It can happen that no rule fires on a example
 no problem for concept learning (the example is then -)
 but problematic for multi-class learning
 because it remains unclear which class to select

 Typical solution: predict the largest class
 more complex approaches: 
 e.g., rule stretching: find the most similar rule to an example

→ similarity-based learning methods



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 47

Pairwise Classification

 c(c-1)/2 problems
 each class against each other class

✔ smaller training sets
✔ simpler decision 

boundaries
✔ larger margins
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Prediction

 Voting: 
 as in a sports tournament:
 each class is a player
 each player plays each other player, i.e., for each pair of classes we get a 

prediction which class „wins“
 the winner receives a point
 the class with the most points is predicted
 tie breaks, e.g., in favor of larger classes

 Weighted voting:
 the vote of each theory is proportional to its own estimate of its 

correctness 
 e.g., proportional to proportion of examples of the predicted class 

covered by the rule that makes the prediction
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Accuracy

 error rates on 20 
datasets with 4 or 
more classes
 10 significantly better 

(p > 0.99, McNemar)
 2 significantly better 

(p > 0.95)
 8 equal
 never (significantly) 

worse

pairwiseone-vs-all
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Advantages of the Pairwise Approach

 Accuracy
 better than one-against-all

(also in independent studies)
 improvement appr. on par with 

10 boosting iterations

 Example Size Reduction
 subtasks might fit into memory 

where entire task does not

 Stability
 simpler boundaries/concepts 

with possibly larger margins

 Understandability
 similar to pairwise ranking as 

recommended by Pyle (1999)

 Parallelizable
 each task is independent of all 

other tasks

 Modularity
 train binary classifiers once
 can be used with different 

combiners

 Ranking ability
 provides a ranking of classes 

for free

 Complexity?
 we have to learn a quadratic 

number of theories...
 but with fewer examples
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Proof: 
● each of the n training examples occurs in all binary tasks where its 

class is paired with one of the other c−1 classes

Training Complexity of PC

Lemma: The total number of training examples for all binary 
classifiers in a pairwise classification ensemble is (c–1)∙n 

Lemma: The total number of training examples for all binary 
classifiers in a pairwise classification ensemble is (c–1)∙n 

Proof Sketch: 
● one-against-all binarization needs a total of  c∙n examples
● fewer training examples are distributed over more classifiers
● more small training sets are faster to train than few large training 

sets
● for complexity f(n) = no (o > 1): o1∑ ni

o∑ ni
o

Theorem: For learning algorithms with at least linear complexity, 
pairwise classification is more efficient than one-against-all. 

Theorem: For learning algorithms with at least linear complexity, 
pairwise classification is more efficient than one-against-all. 
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Preference Data 

 No. Education Marital S. Sex. Children? Car Preferences

1 Primary Single M N Sports > Family

2 Primary Single M Y Family > Sports, Family > Mini

3 Primary Married M N Sports > Family > Mini

4 University Divorced F N Mini > Family

5 University Married F Y Mini > Sports

6 Secondary Single M N Sports > Mini > Family

7 University Single F N Mini > Family, Mini > Sports

8 Secondary Divorced F N Mini > Sports

9 Secondary Single F Y Mini > Sports, Family > Sports

10 Secondary Married M Y Family > Mini

11 Primary Married F N Mini > Family

12 Secondary Divorced M Y Family > Sports > Mini

13 University Divorced F Y Sports > Mini, Family > Mini

14 Secondary Divorced M N Sports > Mini
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Class Information encodes Preferences

A1 A2 A3 Label Pref.

1 1 1 a a > b  | a > c

1 1 0 c c > b  | c > a

1 0 1 c c > b  | c > a

1 0 0 b b > a  | b > c

0 0 0 c c > b  | c > a

0 1 0 c c > b  | c > a

0 1 1 a a > b  | a > c

example with
unknown class label

A1 A2 A3 Label

0 0 1 b 

A1 A2 A3 Label

0 0 1 ? 

dataset with
 class label for 
each example

Label
Preference 

Learner

a > b means: 
for this example 
label a is 
preferred over 
label b
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General Label Preference 
Learning Problem

A1 A2 A3 Pref.

1 1 1 a > b | b > c

1 1 0 a > b | c > b 

1 0 1 b > a

1 0 0 b > a | a > c | c > b

0 0 0 c > a

0 1 0 c > b | c > a

0 1 1 a > c

example with
unknown preferences Label

Preference 
Learner

dataset with 
preferences for 
each example

A1 A2 A3 Pref.

0 0 1 b > a > c 

A1 A2 A3 Pref.

0 0 1 ?

Each example
may have an 
arbitrary 
number 
of preferences

We typically predict 
a complete ranking

(a total order)
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Label Ranking

GIVEN:
 a set of labels:
 a set of contexts:
 for each training context ek:
 a set of preferences

FIND:
 a label ranking function that orders the labels for any given 

context

GIVEN:
 a set of labels:
 a set of contexts:
 for each training context ek:
 a set of preferences

FIND:
 a label ranking function that orders the labels for any given 

context

Pk={λ i≻k λ j }⊆L x L

E={ek∣k=1n }

L={i∣i=1c }

 Preference learning scenario in which
 contexts are characterized by features
 no information about the items is given except a unique name (a label)
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Pairwise Preference 
Learning

dataset with 
preferences for 
each example

A1 A2 A3 a≻b

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

A1 A2 A3 b≻c

1 1 1 1

1 1 0 0

1 0 0 0

0 1 0 0

A1 A2 A3 a≻c

1 0 0 1

0 0 0 0

0 1 0 0

0 1 1 1

A1 A2 A3 Pref.

0 0 1 ?

A
1

A
2

A
3

Pref.

0 0 1 b ≻ a ≻ c 
b ≻ a        |         b ≻ c         |         a ≻ c

A1 A2 A3 Pref.

1 1 1 a ≻ b | b ≻ c

1 1 0 a ≻ b | c ≻ b

1 0 1 b ≻ a

1 0 0 b≻ a | a ≻ c | c ≻ b

A1 A2 A3 Pref.

0 0 0 c  ≻ a

0 1 0 c  ≻ b | c ≻ a

0 1 1 a ≻ c

Mab Mbc Mac

one dataset
for each

preference
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A Multilabel Database

No. Education Marital S. Sex. Children? Quality Tabloid Fashion Sports

1 Primary Single M N 0 0 0 0

2 Primary Single M Y 0 0 0 1

3 Primary Married M N 0 0 0 0

4 University Divorced F N 1 1 1 0

5 University Married F Y 1 0 1 0

6 Secondary Single M N 0 1 0 0

7 University Single F N 1 1 0 0

8 Secondary Divorced F N 1 0 0 1

9 Secondary Single F Y 0 1 1 0

10 Secondary Married M Y 1 1 0 1

11 Primary Married F N 1 0 0 0

12 Secondary Divorced M Y 0 1 0 0

13 University Divorced F Y 0 1 1 0

14 Secondary Divorced M N 1 0 0 1
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Multi-Label Classification

Multilabel Classification:
 each context is associated with multiple labels
 e.g., keyword assignments to texts

 Relevant labels R for an example
 those that should be assigned to the example

 Irrelevant labels I = L \ R for an example
 those that should not be assigned to the examples

 Simple solution:
 Predict each label independently (Binary Relevance / one-vs-all)

 Key Challenge:
 The prediction tasks are not independent!
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Pairwise Multi-Label Ranking

 Tranformation of Multi-Label Classification problems into 
preference learning problems is straight-forward

 at prediction time, the pairwise ensemble predicts a label ranking

Problem:

 Where to draw boundary between relevant and irrelevant labels?

relevant 
labels

irrelevant 
labels

|R|∙|I| preferences

λ7

λ4

λ6

λ2

λ5

λ1

λ3

 R 

 I
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Calibrated Multi-Label PC

 Key idea:
 introduce a neutral label into the preference scheme
 the neutral label is 
 less relevant than all relevant classes
 more relevant than all irrelevant classes

 at prediction time, all labels that are ranked above
the neutral label are predicted to be relevant

λ7

λ4

λ6

λ2

λ5

λ1

λ3

λ0

neutral label c = |R| + |I| 
new preferences

 R 

 I 
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EuroVOC Classification 
of EC Legal Texts

Eur-Lex database
 ≈ 20,000 documents
 ≈ 4,000 labels 
 ≈ 5 labels per document

 Pairwise modeling approach
learns ≈8,000,000 perceptrons
 memory-efficient dual

representation necessary

Results:
 average precision of pairwise method is almost 50%

→ on average, the 5 relevant labels can be found within the first 10 labels of
     the ranking of all 4000 labels

 one-against-all methods (BR and MMP) had an avg. precision < 30%
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Current Work: Graded Multilabel Classification

 Relevance of multiple labels is assessed on an ordered scale
 can also be reduced to pairwise comparisons
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Current Work

Multilabel Rule Learning

 The key challenge in multi-label classification is to model 
the dependencies between the labels

 much of current research in this area is devoted to this topic

 Rules can make these dependencies explicit and exploit 
them in the learning phase

 regular rule:     university, female → quality, fashion

 label dependency: fashion ≠ sports

 mixed rule:     university, tabloid → quality



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 65

Regression

 No Education Marital S. Sex. Children? Income

1 Primary Single M N 20,000

2 Primary Single M Y 23,000

3 Primary Married M N 25,000

4 University Divorced F N 50,000

5 University Married F Y 60,000

6 Secondary Single M N 45,000

7 University Single F N 80,000

8 Secondary Divorced F N 55,000

9 Secondary Single F Y 30,000

10 Secondary Married M Y 75,000

11 Primary Married F N 35,000

12 Secondary Divorced M Y 70,000

13 University Divorced F Y 65,000

14 Secondary Divorced M N 38,000

Numeric Target
Variable



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 66

Rule-Based Regression

 Regression trees are quite successful
 Work on directly learning regression rules was not yet able to 

match that performance
 Main Problem: How to define a good heuristic?

 Transformation approach:
 Reduce regression to classification 
 use the idea of ɛ-insensitive loss functions

proposed for SVMS:
 all examples in an ɛ-environment of the value

predicted in the rule head are considered to 
be positive, all others negative

 rules can then be learned using regular heuristics
for classification rules
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 Goal
 Learn a model of the energy consumption

of the heating system of the Venus express

 Approach
 Information about the consumption is 

available in hindsight
 can be used to train a model

 Best results obtained with ensembles
of regression trees
 local differences cannot be modeled

 but trends can be captured well

 Partner
 ESA / ESOC
 University of Cordoba

Application Example:
Venus Express Power Consumption
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Summary

 Rules can be learned via top-down hill-climbing
 add one condition at a time until the rule covers no more negative exs.

 Heuristics are needed for guiding the search
 can be visualize through isometrics in coverage space

 Rule Sets can be learned one rule at a time
 using the covering or separate-and conquer strategy

 Overfitting is a serious problem for all machine learning algorithms
 too close a fit to the training data may result in bad generalizations

 Pruning can be used to fight overfitting
 Pre-pruning and post-pruning can be efficiently integrated

 Multi-class problems can be addressed by multiple rule sets
 one-against-all classification or pairwise classification
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